Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.

Identifieur interne : 000C03 ( Main/Exploration ); précédent : 000C02; suivant : 000C04

Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.

Auteurs : RBID : pubmed:22322330

English descriptors

Abstract

Interesting phenomena during the Au-assisted chemical beam epitaxy of InAs-InSb nanowire heterostructures have been observed and interpreted within the framework of a theoretical model. An unusual, non-monotonous diameter dependence of the InSb nanowire growth rate is demonstrated experimentally within a range of deposition conditions. Such a behavior is explained by competition between the Gibbs-Thomson effect and different diffusion-induced material fluxes. Theoretical fits to the experimental data obtained at different flux pressures of In and Sb precursors allow us to deduce some important kinetic coefficients. Furthermore, we discuss why the InAs nanowire stem forms in the wurtzite phase while the upper InSb part has a pure zinc blende crystal structure. It is hypothesized that the 30° angular rotation of nanowire when passing from InAs to the InSb part is driven by the lowest surface energy of (1100) wurtzite and (110) zinc blende facets.

DOI: 10.1088/0957-4484/23/9/095602
PubMed: 22322330

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.</title>
<author>
<name sortKey="Lugani, L" uniqKey="Lugani L">L Lugani</name>
<affiliation wicri:level="1">
<nlm:affiliation>NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy. lorenzo.lugani@epfl.ch</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ercolani, D" uniqKey="Ercolani D">D Ercolani</name>
</author>
<author>
<name sortKey="Sorba, L" uniqKey="Sorba L">L Sorba</name>
</author>
<author>
<name sortKey="Sibirev, N V" uniqKey="Sibirev N">N V Sibirev</name>
</author>
<author>
<name sortKey="Timofeeva, M A" uniqKey="Timofeeva M">M A Timofeeva</name>
</author>
<author>
<name sortKey="Dubrovskii, V G" uniqKey="Dubrovskii V">V G Dubrovskii</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1088/0957-4484/23/9/095602</idno>
<idno type="RBID">pubmed:22322330</idno>
<idno type="pmid">22322330</idno>
<idno type="wicri:Area/Main/Corpus">000F05</idno>
<idno type="wicri:Area/Main/Curation">000F05</idno>
<idno type="wicri:Area/Main/Exploration">000C03</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenicals (chemistry)</term>
<term>Arsenicals (radiation effects)</term>
<term>Computer Simulation</term>
<term>Crystallization (methods)</term>
<term>Gold (chemistry)</term>
<term>Indium (chemistry)</term>
<term>Indium (radiation effects)</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Macromolecular Substances (radiation effects)</term>
<term>Materials Testing</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Conformation (radiation effects)</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (radiation effects)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Nanotechnology (methods)</term>
<term>Particle Size</term>
<term>Surface Properties (radiation effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenicals</term>
<term>Gold</term>
<term>Indium</term>
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="radiation effects" xml:lang="en">
<term>Arsenicals</term>
<term>Indium</term>
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallization</term>
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Molecular Conformation</term>
<term>Nanostructures</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Materials Testing</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Particle Size</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interesting phenomena during the Au-assisted chemical beam epitaxy of InAs-InSb nanowire heterostructures have been observed and interpreted within the framework of a theoretical model. An unusual, non-monotonous diameter dependence of the InSb nanowire growth rate is demonstrated experimentally within a range of deposition conditions. Such a behavior is explained by competition between the Gibbs-Thomson effect and different diffusion-induced material fluxes. Theoretical fits to the experimental data obtained at different flux pressures of In and Sb precursors allow us to deduce some important kinetic coefficients. Furthermore, we discuss why the InAs nanowire stem forms in the wurtzite phase while the upper InSb part has a pure zinc blende crystal structure. It is hypothesized that the 30° angular rotation of nanowire when passing from InAs to the InSb part is driven by the lowest surface energy of (1100) wurtzite and (110) zinc blende facets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22322330</PMID>
<DateCreated>
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>9</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.</ArticleTitle>
<Pagination>
<MedlinePgn>095602</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0957-4484/23/9/095602</ELocationID>
<Abstract>
<AbstractText>Interesting phenomena during the Au-assisted chemical beam epitaxy of InAs-InSb nanowire heterostructures have been observed and interpreted within the framework of a theoretical model. An unusual, non-monotonous diameter dependence of the InSb nanowire growth rate is demonstrated experimentally within a range of deposition conditions. Such a behavior is explained by competition between the Gibbs-Thomson effect and different diffusion-induced material fluxes. Theoretical fits to the experimental data obtained at different flux pressures of In and Sb precursors allow us to deduce some important kinetic coefficients. Furthermore, we discuss why the InAs nanowire stem forms in the wurtzite phase while the upper InSb part has a pure zinc blende crystal structure. It is hypothesized that the 30° angular rotation of nanowire when passing from InAs to the InSb part is driven by the lowest surface energy of (1100) wurtzite and (110) zinc blende facets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lugani</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<Affiliation>NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy. lorenzo.lugani@epfl.ch</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Ercolani</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sorba</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sibirev</LastName>
<ForeName>N V</ForeName>
<Initials>NV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Timofeeva</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dubrovskii</LastName>
<ForeName>V G</ForeName>
<Initials>VG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Arsenicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1303-11-3</RegistryNumber>
<NameOfSubstance>indium arsenide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance>Gold</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Arsenicals</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Crystallization</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gold</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Conformation</DescriptorName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>2</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1088/0957-4484/23/9/095602</ArticleId>
<ArticleId IdType="pubmed">22322330</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22322330
   |texte=   Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22322330" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024